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Abstract
The Gepner-like models of kK -type is considered, when k + 2 is a multiple of
K the elliptic genus and the Euler characteristic is calculated. Using free-field
representation we relate these models to σ -models on hypersurfaces in the total
space of anticanonical bundle over the projective space P

K−1.

PACS numbers: 11.25 Hf, 11.25 Pm

1. Introduction

Since the famous work of Gepner [1] the geometric aspects underlying his purely algebraic,
conformal field theory (CFT) construction of the superstring vacuum have become an area
of intensive study. His conjecture that there is some relationship between the CY sigma
model and the product of N = 2 minimal models has been essentially clarified in the works
[1–4, 8–12]. Mirror symmetry, discovered in [2, 5–7], is one of the most important results of
this continuing line of research.

In the important work of Borisov [13] the vertex operator algebra endowed with N = 2
Virasoro superalgebra action has been constructed for each pair of dual reflexive polytopes
defining toric CY manifold. Thus he constructed directly CFT from toric dates of CY
manifold. The approach of Borisov is based essentially on the important work of Malikov,
Schechtman and Vaintrob [14] where a certain sheaf of vertex algebras, which is called the
chiral de Rham complex, has been introduced. Roughly speaking the construction of [14] is
a kind of free-field representation known as the ‘bc–βγ ’-system which in the case of N = 2
superconformal sigma model on toric CY is closely related to the Feigin and Semikhatov
free-field representation [16] of N = 2 supersymmetric minimal models. This circumstance
is probably the key to understanding string geometry of Gepner models and proving Gepner’s
conjecture.

A significant step in this direction has been made in paper [19] where the vertex algebra
of a certain Landau–Ginzburg (LG) orbifold has been related to the chiral de Rham complex

1751-8113/09/304023+11$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/30/304023
mailto:spark@itp.ac.ru
http://stacks.iop.org/JPhysA/42/304023


J. Phys. A: Math. Theor. 42 (2009) 304023 S E Parkhomenko

of toric CY manifold by some spectral sequence. The CY manifold has been realized as an
algebraic surface degree K in the projective space P

K−1 and one of the key points of [19] is
that the free-field representation of the corresponding LG orbifold is given by K copies of
N = 2 minimal model free-field representation of [16].

In this paper we try to extend the LG/sigma-model correspondence of [19] and consider
Gepner-like models which are the products of N = 2 minimal models projected by the integer
U(1) charge condition. Thus we orbifoldize the product of N = 2 minimal models in complete
similarity to the case of Gepner models. The only difference is that we relax the total central
charge condition for the product of minimal models and consider the product of K-copies
of N = 2 minimal models with equal central charges c1 = · · · = cK = 3k

k+2 , where k + 2
is a multiple of K. When k + 2 = K we are in the CY situation considered in [19]. In the
general case we calculate in section 2 the elliptic genus and Euler characteristic of the model.
In section 3 we use free-field representation of [16] to relate this model to the C

K/Zk+2 LG
orbifold. In section 4 we discuss briefly the resolution of orbifold singularity and relate the
model to the σ -model on a hypersurface in the total space of the anticanonical bundle over the
projective space P

K−1.

2. The elliptic genus and Euler characteristic of the Gepner-like models

In this section the elliptic genus is calculated for certain orbifold of the product of N = 2
minimal models. As a preliminary we represent a collection of known facts on the N = 2
minimal models and fix the notation.

2.1. The products of N = 2 minimal models

The tensor product of N = 2 unitary minimal models taking in a number of K can be
characterized by K dimensional vector μ = (μ1, . . . , μK), where μi � 2 being integer
defines the central charge of the individual model by ci = 3

(
1 − 2

μi

)
. For each individual

minimal model we denote by Mh,t the irreducible unitary N = 2 Virasoro superalgebra
representation in the NS sector and denote by χh,−t (q, u) the character of the representation,
where h = 0, . . . , μ − 2 and t = 0, . . . , h. There are the following important automorphisms
of the irreducible modules and characters [16, 17]:

Mh,t ≡ Mμ−h−2,t−h−1, χh,t (q, u) = χμ−h−2,t−h−1(q, u), (1)

Mh,t ≡ Mh,t+μ, χh,t+μ(q, u) = χh,t (q, u), (2)

where μ is odd and

Mh,t ≡ Mh,t+μ, χh,t+μ(q, u) = χh,t (q, u), h �=
[μ

2

]
− 1,

Mh,t ≡ Mh,t+[ μ

2 ], χh,t+[ μ

2 ](q, u) = χh,t (q, u), h =
[μ

2

]
− 1, (3)

where μ is even. In what follows we extend the set of admissible t

t = 0, . . . , μ − 1 (4)

using the automorphisms above.
The parameter t ∈ Z labels the spectral flow automorphisms [18] of N = 2 Virasoro

superalgebra in the NS sector

G±[r] → G±
t [r] ≡ UtG±[r]U−t ≡ G±[r ± t],

2
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L[n] → Lt [n] ≡ UtL[n]U−t ≡ L[n] + tJ [n] + t2 c

6
δn,0,

J [n] → Jt [n] ≡ UtJ [n]U−t ≡ J [n] + t
c

3
δn,0, (5)

where Ut denotes the spectral flow operator generating twisted sectors and r is half-integer
for the modes of the spin-3/2 fermionic currents G±(z) while n is integer for the modes of
stress–energy tensor T (z) and U(1)-current J (z) of the N = 2 Virasoro superalgebra. So
allowing t to be half-integer we recover the irreducible representations and characters in the R
sector.

We use the following expression for the characters found in [17]:

χh,−t (u, q) = q
h

2μ
+ c

6 t2+ th
μ

− c
24 q

1−μ

8 u
h
μ

+ ct
3

(
η(qμ)

η(q)

)3

×
∏
n=0

(
1 + uq

1
2 +t+n

)
(
1 + u−1q− 1

2 −t+nμ
) (1 + u−1q

1
2 −t+n)

(1 + uq
1
2 +t+(n+1)μ)

(1 − qn+1)

(1 − q(n+1)μ)

×
∏
n=0

(1 − q−1−h+nμ)

(1 + uq− 1
2 −h+t+nμ)

(
1 − q1+h+(n+1)μ

)
(
1 + u−1q

1
2 +h−t+(n+1)μ

) , (6)

where

η(q) = q
1

24

∏
n=1

(1 − qn). (7)

The N = 2 Virasoro superalgebra generators in the product of minimal models are given
by the sums of generators of each minimal model

G±[r] =
∑

i

G±
i [r], J [n] =

∑
i

Ji[n], T [n] =
∑

i

Ti[n], c =
∑

i

ci . (8)

This algebra is obviously acting in the tensor products Mh,t = ⊗K
i=1Mhi,ti of the irreducible

N = 2 Virasoro superalgebra representations of each individual model. We use similar
notation for the corresponding product of characters

χh,t(q, u) =
K∏

i=1

χhi,ti (q, u). (9)

By definition [8] the elliptic genus of N = 2 supersymmetric CFT is given by

Ell(τ, υ) = T r(R×R)((−1)f +f̄ exp
[
ı2πτ

(
L[0] − c

24

)
+ ı2πυJ [0]

]
× exp

[
ı2πτ̄

(
L̄[0] − c

24

)]
(10)

The trace is taken over the Hilbert space in the R × R sector and the operators f and f̄ are
fermion number operators in left-moving and right-moving sectors.

2.2. Elliptic genus calculation

Now we calculate the elliptic genus for the case of orbifold of the product of minimal models
when the K-dimensional vector is given by μ = (μ, . . . , μ), where μ is positive and multiple
of K. In these models the total central charge is 3K

(
1 − 2

μ

)
, so it is no longer integer and

multiple of 3 in general. Except the cases μ = K, 2K they cannot be considered in general as
the models of superstring compactification. Nevertheless, the orbifold projection consistent

3
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with modular invariance still exists [3], which makes them interesting N = 2 supersymmetric
models of CFT from the geometric point of view. The general prescription for the orbifold
elliptic genus calculation has been developed in [15] which we shall follow closely.

Before the orbifold projection the elliptic genus of the product of N = 2 minimal models
can be calculated as the elliptic genus of the LG-model [8, 15]

Ell(τ, υ) =
K∏

i=1

Elli (τ, υ),

Elli (τ, υ) = u− ci
6

(
1 − u

1− 1
μ

)
(
1 − u

1
μ

) ∏
n=1

(
1 − u

1− 1
μ qn

)
(
1 − u

1
μ qn

)
(
1 − u

−1+ 1
μ qn

)
(
1 − u

− 1
μ qn

) . (11)

In fact one can get this expression directly using free-field realization of the N = 2 minimal
model of section 3 giving thereby the proof of LG-calculation from [8].

The orbifold group is Zμ and generated by

g = exp(ı2πJ [0]). (12)

According to [15] the orbifold elliptic genus is given by

Ellorb(τ, υ) = 1

μ

μ−1∑
n,l=0

ε(n, l) exp
(
ı2π

c

6
nl

) K∏
i=1

× exp
(
ı2π

ci

6
(n2τ + 2nυ)

)
Elli (τ, υ + nτ + l), (13)

where

ε(n, l) = exp (ıπ(n + l + nl)K). (14)

When c
3 ∈ Z there is another choice of the coefficients ε(n, l) : ε(n, l) = exp

(
iπ(n + l + nl) c

3

)
.

This case corresponds to the CY manifold realized as a double cover of P
k−1 with ramification

along some submanifold in P
k−1. In this paper we will not consider this case.

The summation over n is due to the spectral flow twisted sector generated by the product of
spectral flow twisted operators

∏K
i=1 Un

i . The summation over l corresponds to the projection
on the Zμ-invariant states. The Ramond sector is given by the 1

2 -twisted sector. By this
convention the chiral-primary fields of the NS sector corresponds to the ground states in the R
sector.

The Euler characteristic is given by the value of the elliptic genus at υ = 0

Eu ≡ lim
υ→0

Ellorb(τ, υ) = (μ − 1)K

μ
+ (−1)K

μ2 − 1

μ
. (15)

This expression follows from

lim
υ→0

Elli (τ, υ + nτ + l) = (−1)n(μi − 1) exp
(
−ı2π

ci

6
n2τ

)
, if l = 0,

lim
υ→0

Elli (τ, υ + nτ + l) = (−1)n+l+1 exp

(
ı2π

nl

μi

)
exp

(
−ı2π

ci

6
n2τ

)
, if l > 0. (16)

3. LG orbifold geometry of Gepner-like models

In this section we relate the Gepner-like models to the LG orbifolds C
K/Zμ using essentially

the free-field construction of irreducible representations of N = 2 minimal models found by
Feigin and Semikhatov in [16].

4
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3.1. Free-field realization of N = 2 minimal models

Let X(z),X∗(z) be the free bosonic fields and ψ(z), ψ∗(z) be the free fermionic fields (in the
left-moving sector) so that its OPEs are given by

X∗(z1)X(z2) = ln(z12) + reg., ψ∗(z1)ψ(z2) = z−1
12 + reg, (17)

where z12 = z1 − z2. Then for an arbitrary number μ the currents of N = 2 super-Virasoro
algebra are given by

G+(z) = ψ∗(z)∂X(z) − 1

μ
∂ψ∗(z), G−(z) = ψ(z)∂X∗(z) − ∂ψ(z),

J (z) = ψ∗(z)ψ(z) +
1

μ
∂X∗(z) − ∂X(z), (18)

T (z) = ∂X(z)∂X∗(z) +
1

2
(∂ψ∗(z)ψ(z) − ψ∗(z)∂ψ(z)) − 1

2
(∂2X(z) +

1

μ
∂2X∗(z)),

and the central charge is

c = 3

(
1 − 2

μ

)
. (19)

As usual, the fermions are expanded into the half-integer modes in the NS sector and they
are expanded into integer modes in the R sector

ψ(z) =
∑

r

ψ[r]z− 1
2 −r , ψ∗(z) =

∑
r

ψ∗[r]z− 1
2 −r , G±(z) =

∑
r

G±[r]z− 3
2 −r . (20)

The bosons are expanded in both sectors into the integer modes

∂X(z) =
∑
n∈Z

X[n]z−1−n, ∂X∗(z) =
∑
n∈Z

X∗[n]z−1−n,

J (z) =
∑
n∈Z

J [n]z−1−n, T (z) =
∑
n∈Z

L[n]z−2−n. (21)

In the NS sector N = 2 Virasoro superalgebra is acting naturally in the Fock module
Fp,p∗ generated by the fermionic operators ψ∗[r], ψ[r], r < 1

2 , and bosonic operators
X∗[n], X[n], n < 0 from the vacuum state |p, p∗〉 such that

ψ[r]|p, p∗〉 = ψ∗[r]|p, p∗〉 = 0, r � 1
2 ,

X[n]|p, p∗〉 = X∗[n]|p, p∗〉 = 0, n � 1, (22)

X[0]|p, p∗〉 = p|p, p∗〉, X∗[0]|p, p∗〉 = p∗|p, p∗〉.
It is a primary state with respect to the N = 2 Virasoro algebra

G±[r]|p, p∗〉 = 0, r > 0,

J [n]|p, p∗〉 = L[n]|p, p∗〉 = 0, n > 0,

J [0]|p, p∗〉 = j

μ
|p, p∗〉 = 0,

L[0]|p, p∗〉 = h(h + 2) − j 2

4μ
|p, p∗〉 = 0, (23)

where j = p∗ − μp, h = p∗ + μp.
When μ − 2 is integer and non-negative the Fock modules are highly reducible

representations of N = 2 Virasoro algebra.

5
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The irreducible module Mh,j is given by cohomology of some complex building up from
Fock modules. This complex has been constructed in [16]. Let us consider first free-field
construction for the chiral module Mh,0. In this case the complex (which is known due to
Feigin and Semikhatov as butterfly resolution) can be represented by the following diagram:

...
...

↑ ↑
. . . ← F1,h+μ ← F0,h+μ

↑ ↑
. . . ← F1,h ← F0,h

↖
F−1,h−μ ← F−2,h−μ ← . . .

↑ ↑
F−1,h−2μ ← F−2,h−2μ ← . . .

↑ ↑
...

...

(24)

The horizontal arrows in this diagram are given by the action of

Q+ =
∮

dzS+(z), S+(z) = ψ∗ exp(X∗)(z). (25)

The vertical arrows are given by the action of

Q− =
∮

dzS−(z), S−(z) = ψ exp(μX)(z). (26)

The diagonal arrow at the middle of butterfly resolution is given by the action of Q+Q−. It is
a complex due to the following properties of screening charges Q±:

(Q+)2 = (Q−)2 = {Q+,Q−} = 0. (27)

The main statement of [16] is that the complex (24) is exact except at the F0,h module,
where the cohomology is given by the chiral module Mh,0.

To get the resolution for the irreducible module Mh,t one can use the observation [16]
that all irreducible modules can be obtained from the chiral module Mh,0, h = 0, . . . , μ − 2
by the spectral flow action U−t , t = 1, . . . , μ − 1. The spectral flow action on the free fields
can be easily described if we bosonize fermions ψ∗, ψ

ψ(z) = exp(−φ(z)), ψ∗(z) = exp(φ(z)) (28)

and introduce the spectral flow vertex operator

Ut(z) = exp

(
−t

(
φ +

1

μ
X∗ − X

)
(z)

)
. (29)

Using resolution (24) one can get directly expression (11) for the elliptic genus. By the
spectral flow we obtain also expression (6) for the character.

The resolutions and irreducible modules in the R sector are generated from the resolutions
and modules in the NS sector by the spectral flow operator U

1
2 .

6
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3.2. Free-field realization of the product of minimal models

It is clear how to generalize the free-field representation for the case of tensor product of
N = 2 minimal models. One has to introduce (in the left-moving sector) the free bosonic
fields Xi(z),X

∗
i (z) and free fermionic fields ψi(z), ψ

∗
i (z), i = 1, . . . , K so that the singular

OPEs are given by (17). The N = 2 superalgebra Virasoro currents for each of the models
are given by (18). To describe the products of irreducible representations Mh,t we introduce
the fermionic screening currents and their charges

S+
i (z) = ψ∗

i exp
(
X∗

i

)
(z), S−

i (z) = ψi exp(μiXi)(z), Q±
i =

∮
dzS±

i (z). (30)

Then the module Mh,0 is given by the cohomology of the product of butterfly resolutions (24)
for each minimal model. The resolution of the module Mh,t is generated by the spectral flow
operator U t = ∏

i U
ti
i , ti = 1, . . . , μi − 1, where U

ti
i is the spectral flow operator from the ith

minimal model (29). Allowing ti to be half-integer we generate the corresponding objects in
the R sector.

3.3. LG orbifold geometry of Gepner-like models

The elliptic genus (13) can be considered as the Euler character of certain complex. It is an
orbifold of the complex which is given by the sum of products of butterfly resolutions for the
modules Mh,0. The cohomology of this complex can be calculated by two steps.

At first step we take the cohomology with respect to the operator

Q+ =
K∑

i=1

Q+
i . (31)

It is generated by the bcβγ system of fields

ai(z) = exp [Xi](z), αi(z) = ψi exp [Xi](z),

a∗
i (z) = (

∂X∗
i − ψiψ

∗
i

)
exp [−Xi](z), α∗

i (z) = ψ∗
i exp [−Xi](z). (32)

The fields ai(z) correspond to the coordinates ai on the complex space C
K , the fields a∗

i (z)

correspond to the operators ∂
∂ai

. The fields αi(z) correspond to the differentials dai , while
α∗

i (z) correspond to the conjugated dai .
In terms of the fields (32) the N = 2 Virasoro superalgebra currents (8) are given by

G− =
∑

i

αia
∗
i , G+ =

∑
i

(
1 − 1

μ

)
α∗

i ∂ai − 1

μ
ai∂α∗

i ,

J =
∑

i

(
1 − 1

μ

)
α∗

i αi +
1

μ
aia

∗
i , (33)

T =
∑

i

1

2

((
1 +

1

μ

)
∂α∗

i αi −
(

1 − 1

μ

)
α∗

i ∂αi

)
+

(
1 − 1

2μ

)
∂aia

∗
i − 1

2μ
ai∂a∗

i .

Note that zero mode G−[0] is acting on the space of states generated by the bcβγ system of
fields similar to the de Rham differential action on the de Rham complex of C

K . The next
important property is the behavior of the bcβγ system under the change of coordinates on
C

K [14]. It endows the bcβγ system (32) with the structure of sheaf known as the chiral de
Rham complex due to [14]. It provides the geometric meaning to the algebraic Zμ-orbifold
projection of the product of minimal models.

7
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Indeed, the screening charges Q+
i correspond to some cone in the lattice Z

K generated by
the basic vectors ei . The monomials generated by the fields ai(z) correspond to the dual cone
in the dual lattice [22]. The charges of the fields (32) are given by

J (z1)ai(z2) = z−1
12

1

μ
ai(z2) + r., J (z1)a

∗
i (z2) = −z−1

12

1

μ
a∗

i (z2) + r.,

J (z1)αi(z2) = −z−1
12

(
1 − 1

μ

)
αi(z2) + r., J (z1)α

∗
i (z2) = z−1

12

(
1 − 1

μ

)
α∗

i (z2) + r.

(34)

Hence, making the projection on Zμ-invariant states and adding twisted sectors generated
by

∏μ−1
i=1 (Ui)

n we obtain toric construction of the chiral de Rham complex of the orbifold
C

K/Zμ. The chiral de Rham complex on the orbifold has recently been introduced in [21].
The second step in the cohomology calculation is given by the cohomology with respect

to the differential Q− = ∑K
i=1 Q−

i . This operator survives the orbifold projection and its
expression in terms of fields (32) is

Q− =
∮

dz

K∑
i=1

αi(ai)
μ−1. (35)

Therefore the second step of cohomology calculation gives the restriction of the space of states
to the points dW = 0 of the potential

W =
K∑

i=1

(ai)
μ. (36)

Thus the total space of states is the space of states of the LG orbifold C
K/Zμ and expression

(13) is the elliptic genus of this LG orbifold.

4. LG/sigma-model correspondence conjecture

As has already been mentioned the case of μ = K corresponds to the CY manifold which
is given by degree K surface in projective space P

K−1. The chiral de Rham complex on this
manifold has been constructed in [13, 19]. In [19] the chiral de Rham complex on the CY
manifold in P

K−1 has been calculated by the spectral sequence which relates this complex to
the chiral de Rham complex on the LG orbifold.

We briefly consider here the spectral sequence of [19] for the simplest case of 0-
dimensional CY manifold in P

1 which corresponds to μ = (2, 2) model. Then we consider
the possible generalization to the case when μ is a multiple of K and discuss the underlying
geometry.

When K = 2 and μ = (2, 2) expression (13) gives the elliptic genus of the LG orbifold
C

2/Z2 with the potential

W = a2
1 + a2

2 (37)

as we have seen in section 3.
According to the construction [13, 19] the resolution of the orbifold singularity is given

by the screening charge

D+
0 =

∮
dz

1

2

(
ψ∗

1 + ψ∗
2

)
exp

(
1

2

(
X∗

1 + X∗
2

))
(z). (38)

It gives a fan [22] consisting of two 2-dimensional cones σ1 and σ2, generated in the lattice(
1
2 Z

)2
by the vectors

(
e1,

1
2 (e1 + e2)

)
and vectors

(
e2,

1
2 (e1 + e2)

)
, correspondingly. To each of

8
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the cones σi the bcβγ system of fields is related by the cohomology of the differential Q+
i +D+

0
(the first step of cohomology calculation). By the explicit calculations (see, for example, [13])
one can show that these two systems generate the space of sections of the chiral de Rham
complex on the open sets of the standard covering of the total space of O(2) line bundle over
P

1. The Chech complex of the standard covering glues these sections into the chiral de Rham
complex of the total space of the bundle. The cohomology with respect to the differential Q−

restricts the complex to the set of points dW = 0.
Now we propose the orbifold singularity resolution when K = 2 and μ = 2m,m =

1, 2, . . .. In this case we have the LG orbifold C
2/Z2m with the potential

W = a2m
1 + a2m

2 . (39)

To resolve the orbifold singularity we consider the following set of screening charges:

D+
n =

∮
dz

(
m − n

2m
ψ∗

1 +
m + n

2m
ψ∗

2

)
exp

(
m − n

2m
X∗

1 +
m + n

2m
X∗

2

)
(z),

n = −m + 1, . . . , m − 1. (40)

It is easy to check that these operators commute with the total N = 2 Virasoro superalgebra
currents (33). They commute also with the operators Q−

i when μ = 2m. But most of the fields
(40) cannot appear as marginal operators of the model because they should come from twisted
sectors which do not exist in the model. The only exception comes from the spectral flow
operator

∏μ−1
i=1 (Ui)

n. Hence the only screening charge one can add to resolve the singularity
is D+

0 , the middle one from (40). By this means we are turning back to the fan of μ = (2, 2)

model. The important difference however is that the group Zm is acting on the chiral de Rham
complex sections. But the only bcβγ fields charged with respect to this group correspond to
the fibers of the O(2)-bundle. In other words, the group Zm is acting only along the fibers, so
that the base P

1 is the fixed point set of the action. Therefore we obtain after the blow-up the
Zm-orbifold of the chiral de Rham complex of the O(2)-bundle total space.

The differential Q− of the second step cohomology calculation commutes with D+
0 and

survives Zm-projection. It defines the function (potential) W on the total space of the O(2)-
bundle and Q−-cohomology calculation restricts the chiral de Rham complex to the dW = 0
point set of the function.

We find the potential by the explicit calculation in some coordinates. According to the
construction [13] the set of sections of the chiral de Rham complex of the O(2)-bundle over
that of the open set �i (i = 1, 2) of the standard covering of the total space of the bundle
is given by the cohomology of Q+

i + D+
0 . For example, the sections of the chiral de Rham

complex over the �1 is given by Q+
1 + D+

0 cohomology and generated by the following bcβγ

fields:

b0(z) = exp [2X2](z), β0(z) = 2ψ2 exp [2X2](z),

b∗
0(z) = (

1
2

(
∂X∗

1 + ∂X∗
2

) − 2ψ2
1
2 (ψ∗

1 + ψ∗
2 )

)
exp [−2X2](z),

β∗
0 (z) = 1

2

(
ψ∗

1 + ψ∗
2

)
exp [−2X2](z), (41)

b1(z) = exp [X1 − X2](z), β1(z) = (ψ1 − ψ2) exp [X1 − X2](z),

b∗
1(z) = (

∂X∗
1 − (ψ1 − ψ2)ψ

∗
1

)
exp [−X1 + X2](z), β∗

1 (z) = ψ∗
1 exp [−X1 + X2](z).

Then the potential (37) takes the form

W = (b0)
m(1 + (b1)

2m). (42)

The dW = 0 points are given by the equations

(b0)
m−1 = 0, when b2m

1 �= −1, (b0)
m = 0, when b2m

1 = −1. (43)
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Analogously, the sections of the chiral de Rham complex over the �2 are given by the
Q+

2 + D+
0 cohomology and generated by the fields

b̃0(z) = exp [2X1](z), β̃0(z) = 2ψ1 exp [2X1](z),

b̃∗
0(z) = (

1
2

(
∂X∗

1 + ∂X∗
2

) − 2ψ1
1
2

(
ψ∗

1 + ψ∗
2

))
exp [−2X1](z),

β̃∗
0 (z) = 1

2

(
ψ∗

1 + ψ∗
2

)
exp [−2X1](z), (44)

b̃1(z) = exp [−X1 + X2](z), β̃1(z) = −(ψ1 − ψ2) exp [−X1 + X2](z),

b̃∗
1(z) = (

∂X∗
2 − (−ψ1 + ψ2)ψ

∗
2

)
exp [X1 − X2](z), β̃∗

1 (z) = ψ∗
2 exp [X1 − X2](z).

In these coordinates the potential takes the form

W = (b̃0)
m(1 + (b̃1)

2m) (45)

so that dW = 0 points set is given similar to (43).
Comparing expressions (41) and (44) we see that field b0(z) (b̃0(z)), corresponds to the

coordinate along the fiber and the field b1(z) (b̃1(z)) corresponds to the coordinate along the
base P

1 of O(2)-bundle in the open set �1 (�2).
For general values of K and μ = mK the situation is similar. The only screening charge

one can add to resolve the orbifold singularity comes from the spectral flow operator

D+
0 =

∮
dz

1

K

(∑
i

ψ∗
i

)
exp

(
1

K

∑
i

X∗
i

)
(z). (46)

Together with Q+
i it gives the standard fan of the O(K)-bundle total space over P

K−1.
The highest dimensional cones σi of the fan are labeled by the sets

(
D+

0 ,Q+
1, . . . ,Q

+
i−1,

Q+
i+1, . . . ,Q

+
K

)
. The group Zm is acting along the fibers of the bundle with the fixed point set

P
K−1. Thus we obtain after the blow-up the Zm-orbifold of the chiral de Rham complex of

the O(K)-bundle total space. The differential Q− commutes with D+
0 due to the condition

μ = Km and survives Zm-projection hence, it defines the potential (36) on the total space
of the O(K)-bundle. Therefore expression (13) is the elliptic genus of the orbifold of the
O(K)-bundle restricted to the set of points dW = 0

(b0)
m−1 = 0, when

K−1∑
i=1

bKm
i �= −1, (b0)

m = 0, when
K−1∑
i=1

bKm
i = −1, (47)

where b0 is the coordinate along the fiber and bi, i = 1, . . . , K−1 are the coordinates along the
base P

K−1 in some of the open set of the standard covering of the O(K)-bundle. The algebraic
manifold determined by equations (47) is singular except the case m = 1. Nevertheless, the
Euler characteristics (15) can be represented in the form compatible with these equations

Eu = (−1)K
(

K +
(1 − mK)K − 1

mK
+ (m − 1)K

)

= (−1)K(m Eu(V ) + (m − 1) Eu(PK−1 \ V )), (48)

where V is the set of points in P
K−1 satisfying the equation

∑K−1
i=1 bKm

i + 1 = 0.
The important peculiarity of the orbifold projection is the coefficients (14). They

determine the action of Zm-group in the twisted and untwisted sectors and govern in particular
the topological properties of the σ -model. The investigation of this point as well as more
detailed investigation of toric geometry of the models is left for the future.
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